
Proceedings of ICAPP ‘12
Chicago, USA, June 24-28, 2012

Paper 12341

RGG: Reactor Geometry (&mesh) Generator

Rajeev Jain and Tim Tautges
Argonne National Laboratory

9700 S Cass Avenue, Argonne, IL 60439
Tel: 630-252-3176, Fax: 630-252-5986, Email:jain@mcs.anl.gov, tautges@mcs.anl.gov

Abstract – RGG takes advantage of information about repeated structures in both assembly and
core lattices to simplify the creation of geometry and mesh, it is released as an open source
software as a part of MeshKit mesh generation library. The methodology operates in three stages.
First, assembly geometry models of various types are generated by a tool called AssyGen, next,
the assembly model or models are meshed using MeshKit tools or the CUBIT mesh generation
toolkit, optionally based on a journal file output by AssyGen. After one or more assembly model
meshes have been constructed, they are arranged in a core model using a tool called CoreGen, it
uses a copy/move/merge process to create the core model. In this paper, we present the current
state of tools, new features and parallel-enabled CoreGen. CoreGen is ideally suited for
parallelism, during creation of large reactor core models it was realized as a bottleneck in the
process. For several problems speedups for CoreGen are super-linear, due to the problem fitting
in available RAM at higher processor counts. Several RGG applications viz. VHTR models, a ¼
PWR reactor core, and a Full Core model for MONJU are reported.

I. INTRODUCTION

Creation of geometry and mesh are two very important

steps in the simulation of reactor cores. Nuclear reactor
cores are typically formed by arranging pins in a lattice of
surrounding material. It is possible to describe a reactor as
two-level hierarchy of lattices [1]. The first level of
hierarchy corresponds to fuel or other assemblies
consisting of cylindrical pins, while in the second level
assemblies are arranged in a lattice to form the reactor
core. Although the structure inherent in this two-level
hierarchy could be used to automate parts of this
generation process, experience shows that user interaction
is often required. We describes a system for generating
reactor core geometry and mesh models that balances
lattice-guided automation and user interaction at key points
in the process. This system can be formulated in a three-
stage process. In the first stage, assembly geometry and
meshing scripts are created, second stage creates the mesh
for this assembly geometry, and finally the third stage
creates the core model using the output from the first two
stages. RGG contains two tools: AssyGen and CoreGen for
modeling several types of nuclear reactor assembly and
core models.

Literature overview and various other domain-specific
tools for geometry and mesh generation are discussed in
our previous paper [1]. Also, during the development of
the tools and discussions with neutronics and thermo-

hydraulics groups new features like support for tetrahedral
meshing, creation of axially varying assemblies, support
for 2D core creation, extrusion and others were added to
the toolset, these are reported in a journal publication
earlier this year [2]. The toolset continues to grow robust
with more features and ability to create large models with
automated model creation process. In this paper, we focus
on parallel version of the tool, new models and keywords
for aiding post processing.

Various sections in this paper are organized as
follows: Section II describes the current status of tools and
provides a brief overview, Section III describes parallel
version of the tool and new keywords to the input file
language. Section IV describes core models created using
these tools, along with performance data. Section V
discusses our conclusions.

II. ASSYGEN AND COREGEN

AssyGen and CoreGen are tools developed as a part of

MeshKit [3] library developed and maintained at Argonne
National Laboratory. These tools rely on geometry and
mesh libraries developed as a part of Interoperable Tools
for Advanced Petascale Simulations (ITAPS) project. The
Common Geometry Module (CGM) [4] provides function
for constructing, modifying and querying geometric
models in solid model-based and other formats. Finite
element mesh and mesh related data are stored in the

Proceedings of ICAPP ‘12
Chicago, USA, June 24-28, 2012

Paper 12341

Mesh-Oriented database (MOAB) [5]. Along with
functions to query, construct and modify, MOAB also
provides efficient functions to handle mesh in parallel.
Mesh generation is performed by using a combination of
tools. . The CUBIT mesh generation toolkit [6] provides
algorithms for both tetrahedral and hexahedral mesh
generation. MeshKit provides efficient algorithms for mesh
copy/move/merge, extrude, and other algorithms. The
AssyGen tool generates the assemblies and the CoreGen
tool copy/move/merge(s) those assemblies to form a core.

AssyGen tool is capable of generating rectangular or
hexagonal assemblies. Fig. 1. shows two such hexagonal
assembly geometries being created: Assembly Geometry 1
and 2. It highlights the first two stages of the process. Input
to AssyGen tool is a keyword-based text input file. Output
is assembly geometry and mesh script.

Fig. 1. First two stages of the geometry/mesh process,
where AssyGen and CUBIT are executed for each
assembly type.

 Input file is based on a predefined set of keywords
that are followed by values that describe the model. A
complete list of keywords, options and values are
described in the README file [7]. Geometry file created
by AssyGen can be saved in formats supported by the
geometry engine which was used to build CGM. ACIS [8]
and OpenCascade [9] are currently supported by CGM. In
the input file, we describe an assembly as a lattice of unit
cells. Each unit cell has zero or more concentric cylindrical
layers of material, cut from a background material defined
for each unit cell or for the assembly as a whole. Unit cell
shapes can also be imprinted on the background material,
to more finely control the mesh in each unit cell. The
assembly can be surrounded by one or more layers of duct
wall material. Multiple pincell types can be defined, each
with one or more concentric cylinders of material and a
background material for the cell. Cylinders input for
individual pin cells can be larger than the unit cell
dimensions; these volumes will overlap neighboring
pincell regions when present. In this case, a special
keyword can be used to restrict these larger structures to

the unit cell, such that they do not overlap neighboring
regions. Empty pin cells can be specified in the assembly
lattice by specifying a predefined “XX” or NULL unit cell
type, indicating that only background material (and
structures from neighboring unit cells) overlaps the cell.
Parameters can be specified multiple times with varying Z-
dimensions and material properties to create assembly
models with axially varying properties.

In the second stage of the process assembly geometry
and the CUBIT mesh script, which is automatically
generated by AssyGen are run to generate an assembly
mesh. This assembly mesh has the materials and boundary
conditions defined. Top, bottom and side surfaces of all
materials are marked as boundaries, material names are
suffixed with “_top”, “_bot” and “_side” to name the
boundary conditions respectively. Material names are
defined in the text-based input file. AssyGen is capable of
creating both surface and volume type geometry files and
their corresponding mesh script files. It must be noted that
for a given core configuration first two stages are repeated
for each assembly that forms the core (see Fig. 2. for the
core formed by assemblies created in Fig. 1). It is
incumbent on the user to make sure that the meshes match
between assemblies. The tools don’t explicitly enforce a
constraint to match the nodes along the sides of the
assemblies that sit next to each other. There are keywords
in AssyGen to assign the intervals along the edges and in
the z-direction. The same interval or bias factor must be
used on all the assemblies to guarantee that neighboring
assemblies are glued perfectly and the resulting core mesh
is conformal. In case of a tetrahedral mesh, it is a bit
difficult to enforce this constraint. Both translational and
rotational symmetry of meshes on the side surface of all
the assemblies are desired. This was achieved by meshing
the sides first and then meshing the entire volume. Side
surface are split and have the same mesh interval on the
sides. One half of the split is meshed and then flipped onto
the other half surface [2].

Meshing process is very brittle and often very
sensitive to the input mesh size. This problem occurs due
to several reasons, top surface is cut by a large number of
cylindrical rods and is often hard to mesh using
unstructured quadrilateral elements, also the ratio of largest
to smallest dimension on the top surface of the model is
very large, which entails having very small element size to
mesh the top surface. Tight element budget and specific
needs of the simulation scientists make it clear that finer
control and freedom is required at during this stage of the
reactor core generation process. At present we use CUBIT
for the mesh generation process and specific keywords like
‘EdgeInterval’, ‘RadialMeshSize’ and ‘AxialMeshSize’ are
available as variables in the script to better control the
meshing operation. CUBIT is closed-source, efforts are
being made to develop algorithms like Jaal [10] etc. in the
MeshKit library to tackle such the mesh generation
problems.

Proceedings of ICAPP ‘12
Chicago, USA, June 24-28, 2012

Paper 12341

CoreGen tool reads all the assembly mesh files and a
keyword-based text input file similar to AssyGen input
file. This file describes the arrangement of assemblies in
the core lattice and locations of models for each assembly
type, along with those meshes; this information is used to
generate the overall core mesh. Fig. 2. shows two
hexagonal assembly mesh files, an interstices mesh and a
CoreGen input file. These files are read by the CoreGen
program to create a makefile and a full hexagonal core
mesh file with 19 assemblies as per the specification in the
CoreGen input file. Unlike the example in Fig. 2., which
creates a core mesh, CoreGen can read in geometry files to
create the resulting core geometry, in which case the
overall process becomes a two stage process with no
meshing. The interstices mesh is not copy/moved like the
other assembly mesh files; it is a way to provide fixed
pieces in the model. The makefile generated by CoreGen,
automates the whole process, from various assembly to the
creation of the core. Fig. 3. in Section IIIA demonstrates
the generation of the same core mesh using parallel-
enabled CoreGen.

Fig. 2. Third stage of the geometry/mesh process, where
CoreGen is executed.

CoreGen supports creation of 1/6th, 1/12th and full core
models for a hexagonal type core and full for a rectangular
type core. Details on the specifications and conventions
used for core definition can be found in [1]. Example IVA
creates a 1/6th hexagonal core. Example IVC creates a full
rectangular core. IVA also highlights another variation to
this three stage process. A 2D core is formed in the first
three stages, in the third stage, as per the user specification,
the 2D core model is extruded to desired height and
number of subdivisions to create a 3D core mesh. This 2D
core generation plus extrusion process is faster than its 3D
counterpart.

It must be noted that metadata or material and
boundary conditions must propagate from individual
assemblies to the core. This is achieved by defining
abstractions specifying the handling of specific types of
groupings according to those abstractions [2]. The
groupings are of three different types: copy, expands and
extrude, when an entity is copied and new entities are
created it is assigned to a copy grouping, when the
grouping needs to accommodate and expand, it is assigned
to a expand grouping, for extrude grouping the entities of a
group are replaced by the newly created entities of the
corresponding higher dimension that were extruded.

Often sides or faces of overall core model are desired
as boundary conditions. We use the ‘NeumannSet’
keyword in the input file for top, bottom and side faces; for
side faces, equation of line in radial direction must be
specified along with the keyword. This radial line sets the
particular face or side of the core for which boundary
condition is desired. Internally these boundary conditions
on the core are assigned by obtaining the skin of the entire
core and filtering the faces into relevant/desired groups
specified in the input file.

III. NEW SALIENT FEATURES

For several models the mesh size didn’t fit in the
available memory and we realized a need for parallel-
enabled CoreGen, which is described in section IIIA. In
section IIIB, we highlight the ‘Info’ keyword which helps
in keeping track of pin and assembly number in both
assembly and core mesh files.

IIIA. Parallel-Enabled CoreGen

During creation of core models with large number of

assemblies formed with only a few types of specific
assemblies, it was realized that large memory requirement
was a bottleneck in the process. Recent development in the
parallel capabilities for handling and manipulating meshes
in MOAB created a perfect environment for parallel-
enabled CoreGen. CoreGen itself is ideally suited for
parallelism. The basic algorithm used for parallelizing can
be summarized in five steps given below:

1. On each processor: read CoreGen input file, parse,
and determine assembly copies assigned to this
processor based on a round-robin distribution.

2. Locally, on each processor read assembly meshes
for assemblies determined in step 1.

3. Perform assembly copy/move operations assigned
to this processor.

4. Perform parallel merge.
5. Save output mesh.
For steps 4 and 5, CoreGen leverages the parallel

merge and save algorithms developed in MOAB [5]. New
algorithms were developed for shared vertex and metadata
resolution among the processors [11].

Proceedings of ICAPP ‘12
Chicago, USA, June 24-28, 2012

Paper 12341

The copy/move task distribution is deterministic; it is
done on each processor based on the text-based CoreGen
input file. In step 1, three different cases arise when
distributing the assembly meshes among processors:

A. np < nA
B. nA < np < nT
C. np > nT
In case A, each processors loads more than one

assembly mesh file and solely performs the copy/move
operation associated with that assembly for the entire core.
For case B, some mesh files are loaded in multiple
processors, this mesh file selection is based on the
frequency or the number of occurrence of that mesh file in
the core. The file that appears most number of times in the
core is assigned to multiple processors. This operation is
deterministic and performed by all processors. For case C,
some processors remain idle, copy/move task is divided
per assembly, therefore, only nT processors can take part
in this parallel algorithm.

Fig. 3. demonstrates a simple example to explain the
parallel algorithm. Four processors P0 to P3 are used;
individual assemblies are numbered from 1 to 19. The
model uses two assembly mesh files 1 and 2 and one
interstices mesh, making it three mesh files in total. Fig.
3A shows the processor, mesh file loaded and the
copy/move task. Fig. 3B shows the CoreGen output mesh
for a full hexagonal core with numbered assemblies.

Fig. 3. Third stage of the geometry/mesh process, where
CoreGen is executed.

Processor P0 loads assembly mesh 1, moves it to
location 5 and then copies it to location 5, 6, 9, 10, 11, 14
and 15. Both processor P1 and P3 load assembly mesh 2;
this mesh occurs 12 times in the core. The copy/move task
is shared among P1 and P3 each handling 6 assemblies. P2
loads the interstices mesh and does not participate in the

copy/move process. Once the copy/move task is complete,
CoreGen performs parallel merge, this algorithm does not
delete mesh matching nodes, rather the parallel sharing
information is modified to indicate that they are the same
logical vertex [11]. Parallel merge mesh also significantly
lowers the total wall clock time as shown in Example IV
A. Finally, mesh is saved in parallel using MOAB’s
parallel HDF5-based writer. This writer can write a single
output mesh file combining input from individual
processors. Application codes may require having core
mesh in separate small files for each processor and starting
the simulation or they may require one mesh file from all
the processors. CoreGen input file language defines a
keyword “SaveParallel” which helps in specifying the
option to save mesh from individual processor, one mesh
file from all processors or both.

For several examples superlinear speedup was
obtained, results for 1/6th VHTR core and MONJU reactor
are discussed in Section IV A and IV C respectively.

IIIB. Keywords and Options

Command line option “-m” and “-j” are added to

CoreGen and AssyGen respectively. The “-m” option does
not run the process; it only creates a makefile, which is
often times desired for automatically generating the
assemblies forming the core. The “-j” option in Assygen
only creates a journal or mesh script file, without creating
the geometry. Option “-t” was added to both the tools to
printout detailed timing information, in case of CoreGen
timing information is printed at the end of each step; for
parallel version the maximum wall clock and CPU time
required by a processor for each sub-process are given.

Fuel and other coolant pins are grouped by materials
in the resulting assembly and core mesh. It is often desired
to keep track of the pin/assembly number in the
assembly/core model respectively. Post processing is one
of the areas where it proves to be very useful to mark the
pin and assembly numbers. For instance the radiation or
temperature profiles for a particular pin in a particular
assembly are measured experimentally and must be
validated by simulations; experience has shown that it is
tedious to recognize and locate that pin in hundreds of
thousands of pins that form the reactor core. We achieve
this by creating some information files as output of
AssyGen and CoreGen program. These files can be loaded
into the simulation software and populated along with the
mesh to label the pins and assemblies.

“Info” keyword was introduced in both AssyGen and
CoreGen to trigger the tools to generate extra files
specifying pin/assembly number and their location. Both
AssyGen and CoreGen generate a file with the base name
suffixed with “_info.csv”, in case of AssyGen, this file has
pincell number and location of the pin; for CoreGen the
file contains assembly number, assembly index (mesh files
1 to 2 and number 1 to 19 in Fig. 3) and center of the

Proceedings of ICAPP ‘12
Chicago, USA, June 24-28, 2012

Paper 12341

assembly. CoreGen also creates a file with base file name
suffixed with “_mesh_info.csv” file. This contains the
pincell number and the centroid of each element that
belong to the specified pincell. Internally in AssyGen
during geometry creation each pin is assigned a NAME tag
[3] for material and an extra NAME tag for the pin
number. We trick the system by creating each pin as a
separate material in AssyGen stage. In CoreGen stage after
retrieving the pin number from the assembly these extra
materials are deleted.

This technique has been demonstrated with STAR-
CCM+, where after loading the mesh file the info files with
pin/assembly number and cell centroids are used to mark
the pins using annotations defined in STAR-CCM+. This is
achieved by means of a Java macro which reads the info
file and populates the pin/assembly number based on the
cell centroid to the existing simulation, the macro can be
played from STAR-CCM+ GUI.

IV. EXAMPLES

In this section we present several examples. Example
IV A is available in the MeshKit repository [7].

IV.A. Sixth Core model, Constructed without /with

Using Extrusion and Using Parallel-Enabled CoreGen

In this example we construct the model shown in Fig.
4.,one-sixth Very High Temperature Reactor (VHTR) core.
We create this model using three different techniques and
compare the performance of each technique. . The model
consists of 11.8M hexahedral elements and 14M mesh
vertices. There are a total of 58 assemblies in total and 12
different assemblies that form this core. This model is
tailored to automatically run and create the core mesh from
scratch without any user interaction. Appropriate values of
axial and radial mesh size are specified in the input files.
Makefile generated by CoreGen is used to run the problem.

First, this model was created by using the three-stage
process described in this paper. The tools were run on a
desktop Linux-based workstation with a clock speed of 2.5
GHz and 12 GB RAM. With the three-stage process
without extrusion, it took 4 minutes to generate the
geometries using AssyGen, 5 minutes to create hexahedral
assembly meshes using CUBIT (version 12.2), and 15
minutes to generate the core model using CoreGen. Thus
the total time using this method is 24 minutes.

Fig. 4. One-sixth of a VHTR core model generated by
using CoreGen (left); a closeup of assembly mesh in this
model (right).

Second, the same model was constructed by using a
four-stage process. First, two-dimensional assemblies were
created using AssyGen; then, CUBIT was used to mesh
these assemblies (with quadrilaterals); next, a two-
dimensional core was generated by using CoreGen; in the
fourth stage of this process, the entire 2D core mesh was
extruded into the third dimension. Using this extrusion-
based approach required 0.6 times the execution time of
the three-stage process. The total execution time was
reduced from 24 minutes to 15 minutes, or by almost 40%.
This reduction was due primarily to the reduced number of
vertices that needed to be copied, moved, and merged
between assemblies during the CoreGen stage. For
example, the number of vertices considered for merging
was reduced from 162,690 in the 3D process to only 9,570
in the 2D CoreGen process.

The minimum and maximum shape metrics for the
VHTR mesh are 0.00125 and 0.00618, respectively. These
metrics are low (normally, shape metric values above 0.2
are deemed acceptable). However, the metric are due to
the high aspect ratio of the assemblies (each assembly is
7.93 meters in length but only about 37 cm across) and the
resulting mesh.

The performance of parallel CoreGen was measured
using the without extrusion or three-stage process model
described above. When using 56 processors for running
CoreGen. The total execution time for creating this model
is less than 10 mins (9 mins of serial execution time:
AssyGen and Meshing + 0.33 mins of CoreGen time).
CoreGen takes only 0.33 mins compared to 15 mins in the
serial case.

TABLE I

Proceedings of ICAPP ‘12
Chicago, USA, June 24-28, 2012

Paper 12341

CPU time in mins and maximum memory used for 1/6th
VHTR core with 11.8M hexes.

procs

Copy/Move

(mins)

Merge

(mins)

Save

(mins)

Total

(mins)

Memory

(GB)

1 10.3 3.8 0.4 14.7 3.18
8 5.8 7.5 0.35 13.8 2.13
16 0.2 6.7 0.18 7.2 1.33
32 0.03 0.9 0.09 1.06 0.41
56 0.004 0.2 0.06 0.33 0.2

Table I lists the CPU time and the maximum memory
used for various steps of the CoreGen stage, when using
different number of processors. It is observed that all the
operations see super-linear speedups in some cases;
memory usage data indicates that these steps are where the
application goes from swapping to a state where the job fits
in available memory. This indicates one important reason
for parallelizing RGG, i.e. so the application can fit in
memory without swapping. Next, mesh joining is
observed to actually slow down going from one to eight
processors; this is probably due to the communication
overhead required in the parallel algorithm. However, at
larger numbers of processors, the joining time is reduced
far below the serial time. As expected, the total time, time
taken to save and maximum memory used by a processor
decreases on increasing the number of processors.

VI.C. Full Core MONJU Reactor

Fig. 5 and 6 show a full core MONJU reactor which is
made up of 8 different assembly types and consisting of
715 assemblies in total. AssyGen and meshing takes 5.5
minutes (serial process) and CoreGen on 712 processors on
Fusion cluster at Argonne National Laboratory takes only
1.5 minutes to copy/move/merge and save 8 assemblies to
715 different locations in the core. The total wall clock
time required to generate this 101M hexahedral element
model is 7 mins.

Fig. 5. Full core MONJU reactor (top view).

Fig. 6. Full core MONU reactor; closeup area in red
rectangular region is highlighted from left to right.

VI.D. 1/4th PWR Core Geometry

Fig. 7. shows the benchmark problem: “MOX Fuel
Loaded Small PWR Core”, detailed description can be
found on the website of Nuclear Reactor Analysis and
Particle Transport Lab [12]. Individual assembly
geometries are created using the AssyGen tool and then
CoreGen tool is used to copy/move the assemblies and
form the core geometry. It must be noted that trivial
assemblies that do not contain any rods or the baffles are
generated directly using CUBIT. When creating the core
model “NeumannSet” keyword is used to create individual
side faces of the core as boundary conditions. In Fig. 7. A,
B and C are closeup of the area in red rectangular region
highlighted on the core model. The model consists of
approximately 11k volumes. On a Linux desktop: all the
assembly geometry creation takes 8 mins and CoreGen
takes 12 mins of wall clock time and uses 0.9GB of RAM.

Fig. 7. 1/4th PWR benchmark geometry with closeup views
A, B and C showing details of the model.

Proceedings of ICAPP ‘12
Chicago, USA, June 24-28, 2012

Paper 12341

VII. CONCLUSION

The original three-stage approach for generating
lattice-based models reported in earlier papers has proven
to be very useful. Huge reduction in total clock time
required to create geometry and mesh models for reactor
cores are reported. CoreGen tool was modified to work in
serial and parallel, parallel version of the tool allows the
problem to fit in memory, superlinear speedups are
observed due to the problem fitting in memory, thereby
significantly reducing the total time required for generating
large models. Parallel-enable CoreGen has prompted new
developments in parallel file save and mesh merge
algorithm. AssyGen tool provides new keywords to aid
creation of matching meshes between different assemblies
forming the core. New options for reporting the timing,
creation of only mesh script and makefile are added.
Experience in using the tools has prompted the
development of “Info” keyword which generates new files
along with model files; these info files contain pin number,
assembly number and their location. The info files can be
useful in post processing and other such areas. New types
of reactors are generated using the tools. The full core
MONJU reactor example demonstrates the power of the
parallel-enabled CoreGen tool. Geometry only models can
be created, 1/4th PWR core geometry creation is presented.

ACKNOWLEDGMENTS

We thank Jason Kraftcheck for his work on MOAB’s

parallel writer, Nathan Bertram for parallel merge mesh
capabilities in MOAB, J. H. Thomas for helpful
discussions and feedback during the development of the
tools. We also thank the Fathom group at Argonne, who
maintain the libraries required by this tool. This work was
supported in part by the U.S. Dept. of Energy Office of
Nuclear Energy Nuclear Energy Advanced Modeling &
Simulation (NEAMS) Program; by the U.S. Dept. of
Energy Office of Scientific Computing Research, Office of
Science; and by the US Department of Energy’s Scientific
Discovery through Advanced Computing program, under
Contract DE-AC02-06CH11357.

NOMENCLATURE

nP: Number of processors.
nA: Number of different assemblies forming the core.
nT: Total number of assemblies forming the core.

REFERENCES

1. T. J. TAUTGES AND R. JAIN, “Creating geometry
and mesh models for nuclear reactor core Geometries
using a lattice hierarchy-based approach,” Proc. 19th
International Meshing Roundtable, Springer, Berlin,
351 (2010).

2. T. J. TAUTGES AND R. JAIN, “Creating geometry
and mesh models for nuclear reactor core Geometries
using a lattice hierarchy-based approach”, Engineering
with Computers, (2011).

3. TAUTGES, T.J., KRAFTCHECK, J., PORTER, JIM,
CACERES, ALVARO, GRINDEANU, IULIAN,
KARPEEV, DMITRY, JAIN, RAJEEV, KIM, HONG-
JUN, CAI, SHENGYONG, JACKSON, STEVE, HU,
JIANGTAO, SMITH, BRANDON, VERMA,
CHAMAN, SLATTERY, STUART, WILSON, PAUL:
MeshKit: A Open-Source Library for Mesh Generation.
Proceedings, SIAM Conference on Computational
Science & Engineering. SIAM, Reno, NV (2011).

4. T. J. TAUTGES, “CGM: A geometry interface for
mesh generation, analysis and other applications,”
Engineering with Computers, 17, 486 (2005).

5. T. J. TAUTGES, R. MEYERS, K. MERKLEY, C.
STIMPSON, AND C. ERNST MOAB: A mesh-oriented
database, SAND2004-1592, Sandia National
Laboratories, Albuquerque, NM (2004).

6. G. D. SJAARDEMA, T. J. TAUTGES, T .J. WILSON,
S. J. OWEN, T. D. BLACKER, W. J. BOHNHOFF, T.
L. EDWARDS, J. R. HIPP, R. R. LOBER, AND S. A.
volume 1: Users manual, Sandia National Laboratories,
Albuquerque, NM (1994).

7. MeshKit website (2012),
http://trac.mcs.anl.gov/projects/fathom/browser/MeshKit

8. Spatial website (2012) http://www.spatial.com/

9. Open CASCADE Technology website (2012),
http://www.opencascade.org.

10. CHAMAN SINGH VERMA AND TIM TAUTGES,
“Jaal: Engineering a high quality all-quadrilateral mesh
generator”, Proc. 20th International Meshing
Roundtable, (2011).

11. TAUTGES, TIMOTHY J., KRAFTCHECK, JASON,
BERTRAM, NATHAN, SACHDEVA, VIPIN,
MAGERLEIN, JOHN, “Mesh Interface Resolution and
Ghost Exchange in a Parallel Mesh Representation”.
Presented at the 26th IEEE International Parallel &
Distributed processing Symposium, Shanghai, China,
May 21 (2012).

12.1/4th PWR Benchmark Problem (2012),
http://nurapt.kaist.ac.kr/benchmark/

